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1, Introduction

"The major aim of our research investigations has been to develop new algorithms and the
corresponding computer codes for exact numerical solutions of the time-dependent Boltzmann
equation for the transport of electrons (and other charged particles) in gases subjected to external
electric fields of arbitrary strengths. The electron velocity distribution function obtained as a
solution of the Boltzmann equation is used to calculate a set of experimentally measurable swarm
parameters for the transport of electrons in actual pure gases or in gas mixtures subjected to static
or time-dependent external electric fields. A direct comparison of the calculated swarm parameters
with the corresponding experimental values provides a useful check on the validity and accuracy of
the results obtained using the present codes. It is especially useful to have a general computer
program for calculatipg the theoretical values of the electron swarm parameters for gases for which
there are, as yet, no experimental values or for which direct laboratory experiments are simply not
feasible.

Using our novel algorithm we have obtained the numerical values of swarm parameters for
the cases in which the external electric field is either constant or varies with ﬁmc in a sinusoidal
fashion, both for a pure gas as well as for a gas mixture. The external rf electric field is of the
formE = E sin ot or E = Ecos o, of arbitrary strength E | and arbitrary frequency ®. The
present investigations have allowed us to analyze the relations between the frequency ® of the field
and the frequency v of collisions of the electrons with background gas particles, with number
density N. These relationships can be qualitatively understood by using a simple model in which
one assumes a constant collision frequency for the projectile-gas collisions. In this model the time
dependence of various swarm parameters using the g_gmme_t_c Boltzmann equation can be
analytically solved. The whole analysis is carried out for an arbitrary value of the ratio y of the
projectile mass to the ambient gas particle mass so that the derived expressions are valid even for
the transport of heavy ion swarms in gases subjected to external rf fields of arbitrary strength.

Even though these analytical results are interesting and useful in their own right, they have been
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used merely as a check on the results from the actual computer code which did not, in general,
assume a constant collision frequency; in the code the energy-dependent collision frequency is
determined by the actual collision cross sections used.

In the course of present work, we came across a few additional problems that needed to be
investigated. For example, in order to test the versatility of our single-target-gas computer code we
tried to obtain the temporal history of the behavior of charged particles other than electrons in a
gas, and for this purpose we chose a positron swarm. This investigation allowed us to compare
the behavior of electron sw.arms with that of positron swarms under similar conditions. As a part
of additional investigations, we calculated the cross sections for the processes which are important
for a realistic modeling of a hydrogen plasma. In this connection we have investigated the
dependence of the cross sections for pure dissociation of H, upon the initial vibrational state of H,.
Finally, we have also investigated the penetration probability of a quantum hﬁrmonic oscillator into
the classically forbidden region in the limit of large quantum numbers using analytical methods. An
expression is derived for the asymptotic form of the penetration probability, and is shown to be in
good agreement with an earlier result obtained by numerical methods. The asymptotic form of the
probability density in the region between the classical turning points is also presented and found to
have a simple physical interpretation.

1.1 Novel method of solving the Boltzmann equation

We provide here a very brief summary of our algorithm for solving the Boltzmann equation

exactly. The traditional Boltzmann equation used for calculating the parameters which characterize
the transport of electrons injected in a neutral gas which is subjected to an external electric field E
(constant or timae-dependent) is

M ooy, fv,0 = RV,D 1)
The solution f(v, t) provides the (spatially homogeneous) velocity, or equivalently energy,

distribution function of the electrons. Here a = -eE/m represents the acceleration of the electrons
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due to external electric field E and the collision term R(v, t) represents the rate of change in the
electron velocity distribution function due to all possible collision processes among the electrons
and the ambient gas particles. The collision term R(v, t) itself involves integrals over the
distribution function f(v, t) so that in its complete form, the Boltzmann equation is a time-
dependent integrodifferential equation whose numerical solution, in the past, has been obtained
only after making some simplifying assumptions.

In our algorithm no expansion of any kind of the distribution function is made and no
derivatives are evaluated numerically. The proposed procedure for obtaining the time-dependent
velocity distribution function is numerically stable and computationally inexpensive. In order to
derive the basic equation of our algorithm we multiply Eq. (1) by a small time interval At and add

the distribution function f(v, t) to it to obtain
f(v,t) + (At % +Av e Vv) f(v,t) = f(v,t) + R(v, t) At , (2)

where Av = a At is a small velocity increment. Eq. (2) can be rewritten as
f(v + Av, t + At) = (v, t) + R(v, t) At . 3)

Thus, the difference equation (3) is entirely equivalent to the Boltzmann equation in its physical
content. We have realized [1] that the above difference equation is much simpler to solve for the
time-dependent velocity distribution function than the standard integrodifferential Boltzmann
equation. Furthermore, being a difference equation, Eq. (3) is more suited for numerical
computations than Eq. (1). A few important advantages of our novel algorithm over the traditional
techniques are:

(i) Since our algorithm does not involve any numerical computation of partial derivatives, there

is no need to invoke Courant-Levy condition for numerical stability. Thus, the time-step At

and the velocity-step Av can be varied almost independently.
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(i) Lack of numerical evaluation of any derivatives also makes our algorithm computationally
inexpensive. Almost all of our numerical results are obtained on microcomputers or
workstations.

(iif) Since no truncation of expansion of any kind of the distribution function is made in our
work, the present algorithm provides swarm parameters for any value (that is, for both high
and low values) of E/N.

1.2 The collision term

An explicit expression for the collision term R(v, t) has been provided by Holstein [2] in

the following form:
R(v, 1) = ZR;(V, - Ryv,0) 4
p

where
N (2, F am
+ _ N : )
Rp (v,t) = ) va dvp A’ sin y dy Jda Vo f(vp, t) csp(vp, y) &(v gp(vp, y)) (5a)

represents the rate at which the projectile particles with initial speed vp are scattered, due to the pth

(p = elastic, excitation, ionization etc.) scattering process, into a velocity-space-volume element
d3v located at v, and

R,'r(v, ) = Nvi(v, 1) op(v) (5b)
represents the rate at which the projectile particles are scattered, due to all possible collision
processes, out of the velocity-space-volume element d3v located at v. Naturally o p(vp, V) is the
differential cross section for the pth collision process, and or(v) is the integrated total scattering
cross section. The energy conserving delta-function relates the initial speed v pto the final speed v

for the pth collision process via the function g_(v_, ) which is defined by the relationship
&Yp

v = gy(vp ).
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v is the scattering angle. Figure 1 shows the relationship among various angles as well as

directions of relevant vector quantities. For example, the direction of v, can be specified with

respect to either v or z. These two specifications imply

3.2 : _ 2 :
d Vp = Vp dvp sin Bp dep d¢p o dvp sin y dy da . (62)

Also, cosy = cos 0 cos Gp + sin 0 sin Op cos ¢p . (6b)

eV

4,

A A A
(VXZ) xV
Fig. 1: Geometry used in the discussion of the collision term.

For glastic collisions (p = ) of projectiles of mass m incident on gas particles (of mass M)

at rest, we obtain from simple kinematics (simply using conservation of energy and momentum),

v =v.qy) =gV - @)
1-u2 sin2) 2 + 1 cos 3
Here aly) = L l‘"lu ro Y, (8a)

and u = m/M. For small p (for example, for electron or positron swarms in atomic and molecular

gases) we can approximate

qy) = 1-p(1-cosy) . (8b)
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Now, no matter what simplifying assumptions one makes for obtaining a solution of Eq.
(1), ultimately one will compute, for direct comparison with the corresponding experimental
values, various transport or swarm parameters (such as the average energy of the projectile
particles in the charged beam, the drift and diffusion rates of the beam particles in the ambient gas,
the rates of excitation and ionization of the ambient gas particles by the impact of the charged beam
particles etc.), which are expressed as integrals involving the distribution function f(v, t). A
typical swarm parameter will be the expectation value of a function g(v) = g(v, 8, ¢), which itself

does not depend on time explicitly:

o T 2T
[vav [sin0do [ do g(v, 6, ) f(v, 6, 1)
G = (gW) = —— 0 : ©

o0

T
wheren(t) = 2 n J-'v2 dv [f(v,6,t) sin 6 dO is the number density of projectiles and, in the
0 0

case of elastic collisions only, n(t) is independent of time and can be normalized to 1 for
convenience. Note that f(v, 9, t) is azimuthally symmetric since E will be taken to be along the z
axis.
1 Relation n_the field fr n nd th llision fr n

Because of the potential applications of a hydrocarbon-rare-gas mixture, we chose to
investigate the transport of electrons in a mixture of gaseous methane and argon with the ratio of
the number densities of CH, and Ar always maintained at 0.05. In the collision term of the
Boltzmann equation we included the cross sections for elastic, vibrational excitation and ionization
processes for methane, and for the elastic, excitation and ionization processes for argon. Using the
numerical electron velocity distribution function we calcul\ated, as a function of time, various
swarm parameters such as the transverse diffusion coefficient, drift velocity and average energy of
the electron swarm, rates of ionization and excitation of the background gas mixture by electron

impact, frequencies of collisions of electrons with ambient gas targets, etc. For brevity of
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presentation, we will only show the time-dependence of a single swarm parameter, namely, the
average energy of electrons in the swarm. In all presentations, the initial (att = 0) velocity

distribution of the electrons in the swarm is assumed to be a Maxwellian distribution with an

average energy of 10 eV. Also, att = 0, various collision frequencies, defined as Vp = (Ncpv)

(p = elastic, excitation, ionization, etc.), are calculated for both methane and argon using the
Maxwellian distribution function for electrons. The largest and the most relevant of these
frequencies, in the present mixture, is the frequency of elastic collisions of electrons with argon.
Note that the electron veloc‘ity distribution function, and consequently the collision frequencies,
varies with time; however, at all times the frequency of elastic collisions of electrons with argon
remains as the dominant collision frequency. In the present investigations, we have varied ® while
keeping v fixed. The results of these investigations, shown in fig. 2, provide insight in the time-
dependent behavior of electron swarms in gases subjected to external rf electric fields.

Fig. 2, consisting of five frames labeled (a) to (¢), shows the temporal evolution of the

average electron energy in the methane-argon mixture with the value of the field frequency ®

increasing from fig. 2(a) to fig. 2(¢). The set of parameters belonging to this figure are: E | = 744
V/cm, the total gas density N = 3.72 x 1016 ¢m™3, E/N = 2KkTd, field frequency w = 1.0x 108
Hz,v_ = 580x10°sec’, N(CH,) = 1.77x10'% cm™, N(Ar) = 3.54x 10 cm?3 and

N(CH,):N(Ar) = 1:20. On advancing from fig. 2(a) to fig. 2(e), the electric field frequency w is
increased while keeping E , N and the ratio N(CH,):N(Ar) fixed. In figs. 2(a) and 2(b) the

collision frequency v is larger than the field frequency ®; in fig. 2(c) the collision frequency v is

comparable to the field frequency w and in figs. 2(d) and 2(e) the collision frequency v is less than

the field frequency ®. Results in fig. 2 allow us to make the following conclusions:

+ We observe, from figs. 2(a) and 2(b), that when collision frequency v is larger than the field
frequency o, the average of the oscillating equilibrium values of the electron energy is more

than the initial electron energy (which, in the present case, is 10 eV att = 0) leading to the




Final Technical Report (Grant Number F49620-92-J-0027) Page 10

r I I T ]

30T

25|

20T

157

10 (2) ©=10x108 Hz

PSP St |

18

16 |

141 E

12 9 ;

ok (b) o=1.6x10"Hz B
> 128
L ©=32x107 Hz .
&D | I il —-:
g 11.5 [mml il ]
0 e .
= i it 1 ;( ._||Ii i*! :‘|I[ 1'1"1 "'iii|'§|“§mi!'x("i‘§ifv T —— |
g 105 F bbb ;-JH‘}‘, m |“|;'!‘”,,1! ! "f" |'5'1I='%“ I“l\l (il ~’ il (R PR | i ]
3 . i i it I e
m i o

C

§D 95k {( ): —_— 5
o ]
5 of ® = 6.4 x 109 Hz E

o

5|

7

10 E — F—————

o=10x101 H

—-——-- Zero Electric Field

“h O N2 oo O

SN C R e i S
) 2 3 x10

Time (sec)
Fig. 2: Temporal evolution of the average energy of an electron swarm in a methane-argon mixture
subjected to an external rf electric field for different values of the field frequency, .

-8




Final Technical Report (Grant Number F49620-92-J-0027) Page 11

microwave heating of the electron swarm. For v less than o (see figs. 2(d) and 2(e)) the
electron swarm loses energy to the background gas particles.

o As the frequency o of the field is increased, the amplitude of the oscillations in the average
electron energy is reduced (compare figs. 2(a) through 2(e)). Furthermore, for very high
values of o, the average electron energy behaves (see fig. 2(¢)) in the same manner as in the
absence of external field. Both of these facts can be physically understood by realizing the
origin of oscillations in the time-dependence of the average electron energy. Change in the
average energy of the electrons is caused by collisions as well as by the external electric field;
the external 1f field, during its one full cycle, both accelerates as well as decelerates the
electrons so that the average energy of electrons exhibits the oscillatory behavior. As the field
frequency @ increases (and, therefore, the period decreases) the time available for the electrons
to be accelerated or decelerated by one cycle of the field is reduced which leads to a diminished
amplitude of the oscillation in the time-dependence of the average electron energy. At
extremely high frequency of the field (or very small period of oscillation of the field), a typical
electron makes almost no collisions during one period and, furthermore, both acceleration and
deceleration of the electron by the field cause no net change in the velocity of the electron -- any
change in the velocity of the electron occurs due to collisions only. Thus, in fig. 2(e) where ©
is much larger than v the average electron energy behaves as if there is no external field. A
physical understanding of these results can be obtained using a simple model (see sec. 1.4)

The investigations of electron transport in a gas mixture have demonstrated that the electron

swarm parameters depend sensitively on the relative values of the electron collision frequency v

and the external field frequency ®. Such investigations are important in developing a tailor-made

mixture of gases with a pre-chosen behavior for electron transport in them.

1.4 nstan llision Fr ncy Model

While developing our computer code for the case of a sinusoidally varying time-dependent

electric field, E = zE  cos (wt), we intended to consider simple cross sections in the collision
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term such that the complete time-dependence of the corresponding swarm parameters, G(t), can be
exactly obtained analytically. These analytical expressions for the time-dependent swarm
parameters will, then, provide useful checks on the correctness of the numerical results obtained
from our general computer code with time-dependent electric field. With this thought in mind we
started with the case where one only has isotropic elastic scattering of electrons, positrons or heavy

ions by atomic and molecular targets with a constant frequency v. Then

v=Nvop(v) =4nNv ce(v, V) , (10)
\% ; 2 T 2m
R:(v, t) = p J v dv, gsin\ud\y J do: f(v,, 1) &(v - v, q(w)) (11a)
and
R(v,0) = vi(v,1) . (11b)

Now we can write the differential equation satisfied by the swarm parameter G(t) [with n(t)

normalized to 1] simply by differentiating Eq. (9),

oo 2R
dG()
dt ~

T
V2 dv jsinedequ) o(v, 0, o) A 0.0
0
0

t (12)

0

Substituting for gtf from the Boltzmann equation (1), taking & = qE/m to be along the z-axis and

using integration by parts, we obtain

; dG,,(t
g—% = _a<[ag(\399, 9) 3139 - COS Oa (V’Ve’ ¢):|) + v{—é{ﬁ - (g(v, 9, ¢))} , (13)

where, as before, {...) represents the expectation value and

b 27
dG T
\Y ———————é?(t) = Jvz dv [sin6do OJ' do g(v, 0, 9) R+(v, t) . (14)
0 e

Next, substituting R:(v, t) from Eq. (11a) into Eq. (14), using (6a) and using the delta function to

carry out the v-integration, we obtain

dGlR(t) °°2 T . 27
—a = Jve dv, Of sin 8, d6, Oj do, H(v,, 8, 9,) f(v,, 1) = (H(v,0,9¢)) (15




S
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where the function H is given by
27

T
Hv, 0,00 = 7= [sin 0 Oj do g(v, q(¥), 8,0) (16)

and v is related to 6, 6, and ¢, via Eq. (6b). Thus, we obtain our principal result, namely,

the first-order ordinary differential equation satisfied by a swarm parameter G(t):
dG() _ d(g(v, 8, ¢))
d - dt

. a<[ag(va,ee, Osinb o5 o8t 0.0) ] Y + v (H®, 8, §) - g(v, 8, &) . (17)

where H(v, 0, ¢) is given by equation (16). As we will see now, there are several important cases

in which the differential equation (17) can be solved exactly. In all these cases we will take the

external electric field to be sinusoidally time-dependent, that is, E = zE o COS (wt), or
equivalently,a = a_ cos (wt). We consider two specific examples:
(a) Drift velocity of electrons.

In this case g(v, 0, ¢) = v cos 8, and (g(v, 6, §)) = v,(t), the drift velocity. Using Eqs.

(16), (6b) and (8) together, we get, in this case,
= |
H(v,, 0., 0,) = T+ Ve cos (Be).
The differential equation (17), now, becomes

dv,(®
dt

wherev=(1-A)vandA = %(l—f‘—ﬁ} This differential equation can be solved exactly; the

= +a cos (@) - vvy® (18)

solution is

v4(®) = v40) exp{- vt} - A [V {exp(- V t) - cos (wt)} - @ sin (wt)], (19a)
a
ith A = =2 .
wit 7o ) (19b)

As a special case, for a dc electric field (o = 0), one has

v4(® =v40) exp{- vt} + %[1 -exp(-vo] . (20)

In the absence of collisions (v = 0) Eq. (20) reduces to
vd(t) =Vd(0) +at ‘ (21)
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which is consistent with the simple equation of kinematics.

(b) _Average energy of electrons,

For the case of average energy of electrons, g(v, 6, ¢) = % m v2 and (g(v, 6, d)) = &(1).

For this case, we obtain from Eq. (16) [using (6b) and (8)],
i

2r 2
1 _1 2 3-u
H(v,,6..9¢,) = sm j d¢ f q%(y) sin0dO = Fmv, l:3 (1+l~l)2j|
2
and  (H(v, 8, ¢)) = [i“—] (t).
3 (1+p)>
The differential equation for £(t) now becomes
de(t 3- gz }
= t t) + - 1re(t , 22a
at +ma_ cos (0t) v (1) V{3(l+u)2 ® (22a)
or
L) _ 4 macos (@) vy - 6AVe®) . ‘ (22b)
This differential equation for (t) can be solved exactly; the solution is
t
e(t) = exp (-6A vt} [8(0) + ma 0[dt' cos (wt') exp (6 A v t') vd(t')} . (23)

After substituting v (1) from Eq. (19) into Eq. (23) one can easily carry out the integrals and the

resulting expression for g(t) is

e(t) = exp {-6A vt} [e0) + ma JO)], (24a)
where B
- viO®-Av A {- 3?&2+m2] ]
o= (1-60)2V2 + 0? 0 +7 A2 V2 + @2 127\[exp{ 6Ave) - 1]
+ 2 [9;;}7’:2—{—_62)‘—”} [cos 2 (3AV2 - ©?) + sin Qot) (1 +30) V)]
with

I(t) = exp {- (1 -6A) vt} [wsin (@) - (1-6X)Vvcos(@)]+(1-61)V. (24b)
Again, for the case of a dc external field (o = 0), Eq. (24) simplifies to




Final Technical Report (Grant Number F49620-92-J-0027) Page 15

xlO6
L I ] | 1 | v T
8 -
§ [ Collision Frequency, v = 20 GHz
€ 6 -
< ¢ —— Numerical Results
2 | -—-- Analytical Results ]
8 af ]
% 3 4
> |
9‘: L
5 2[ .
O | e T '
0 1 2 3 4 5 x1070
Time (seconds)
Fig. 3: Time-dependence of the electron drift velocity in a model gas, with constant collision
frequency v, subjected to an external dc electric field (@ = 0).
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Fig. 4: Time-dependence of the electron average energy in a model gas, with constant collision

frequency v, subjected to an external dc electric field (o = 0).
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Fig. 5: Time-dependence of the electron drift velocity in a model gas, with constant collision

frequency v, subjected to an external ac electric field (frequency ).
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Fig. 6: Time-dependence of the electron average energy in a model gas, with constant collision

frequency v, subjected to an external ac electric field (frequency o).
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ma, (O v-2a) lexp {-6AVt)-exp {-vt}]

g(t) = exp {-6A vt} e0) +

(1-6)) V2
ma, _
+6XVZ[1 - exp {-6Avt}] . (25)
Furthermore, in the absence of collisions (v = 0), Eq. (25) becomes
m ag 2
gt) = €0) + ma vyO) t + —5 , (26)

which is consistent with Eq. (21), the simple equation of kinematics. Considerable simplification
is also achieved in Eq. (24) for the case where u = 0; this is a quite reasonable assumption when
electron or positron swarms are transported in atomic and molecular gases since then the ratio m/M

is indeed quite small. In this case one obtains, on setting A=0,

&) = e(0) +m A [v,(0) - AV () +m A ao[l —cos Qon) | v sin(Gan "7‘] .
where I(t) = exp(-vt) [osin(ot) - vcos(wt)] + v and A = —2—?——2 .
A ()

Equations (19), (25) and (27) have provided very useful checks on the computer code which
incorporates a sinusoidally time-dependent external electric field. For example, Figs. 3 and 4

show a comparison of the time-dependence of the electron drift velocity and electron average
energy, in a model gas with constant collision frequency and subjected to an external dc electric
field, obtained from the numerical code and from the present analytical work [see Egs. (20) and
(25)]. Figs. 5 and 6 show a similar comparison for the case in which the external electric field is
sinusoidally time-dependent with a frequency w [see Eqgs. (19) and (24)]. These comparisons have
not only provided useful checks on the numerical results for electrons in real gases but have also
enabled us to decide the actual time-step At and velocity step Av which should be used for accurate
numerical results, for both ac and dc electric fields. Eq. (27) can be used to understand, at least

qualitatively, the conclusions reached from the results of Fig. 2.
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1.5 Effect of the temperature of the background gas on f(v, t).

“In the case where the background gas particles are at rest, even for elastic collisions of
electrons (of mass m) with gas particles (of mass M) there is a transfer of energy, of the order of u
=m/M, from the electron to the recoiling gas particle so that, in the absence of any external electric
field, the numerical value of the average energy of electrons continues to reduce with time,
approaching the unrealistic value of zero. A finite equilibrium value of the average electron energy
is reached, numerically, only if one assumes p = 0. In order to make the situation in our
calculations more realistic, we decided to investigate the effect of temperature (and, therefore,
motion) of the background gas on the electron velocity distribution function. We assume that the
number density of the gas particles is much larger than that of electrons so that electrons interact
with gas particles more frequently than among themselves. Also, because of their large
concentration, the gas particles interact with each other much more often than with electrons.
Therefore, the background gas can be assumed to have a Maxwellian velocity distribution function,
with a temperature parameter that varies slightly with time. The collision term, in general, has the

form

R(v, 1) = f{f(v', 0 E(V', 1) - (v, 1) E(V, 0)} Iv - VI Ma‘?fﬂ dQ dav | (28)

where v'and V' are the velocities of the electron and the gas particle before the collision and v
and V are the corresponding velocities after the collision. F(V, 1) is the Maxwellian velocity
distribution function of the gas, Iv - VI = u is the relative velocity of the colliding partners and 3—5
is the differential cross section for elastic scattering. In cylindrical coordinates the collision

integral, for small but finite y, can be written as
o0

s 2r =w 2n do
R(vp, v, t) = (gsin v dy Jdo& Jsin 0 do qu) J{f(vp', v, ) F(V,t)u a0 } V2dv

-No, f(vp, vV, D)V (29)
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Fig. 7: Geometry of various vectors used in evaluating the collision integral.
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where, as shown in fig. 7, y and o are the polar and azimuthal angles of V, (8, ¢) are the

scattering angles, o, is the integrated elastic cross-section and N is the gas number density. The

five-dimensional collision integral is evaluated, in the present work, numerically using the Monte
Carlo technique. To do it we need to express vp‘, v, and V'in terms of Vo Yy V and all the
relevant angles (y, o, 0 and ¢) using various conservation laws.

From the energy and momentum conservation laws we know that, in elastic collisions, the
vector of center of mass velocity and the magnitude of relative velocity of the two colliding partners

do not change. The center of mass velocity and relative velocity, given by

mv+MV mv +MV' ' [ [ : !
C=P o =M 8=V -V, u =V -V, [withu = u

have components

1
1+u\/u +2uvprcosa, C, = T+ 1

u =\/vp2+Vp2-2vprcosa, uZ=VZ-vZ,and u = up2+u

p 4

These relations provide the components of the center of mass velocity and the magnitude of relative
velocity in terms of the velocities of particles after the collision. Now we need to obtain them in

terms of the velocities before the collisions. Using

L 1 '
Vv = C - 1+ u u 9
the components of v' and of u', in terms of scattering angles, are
. 2 1 22 . 1 ,
vp—A\/Cp+(1+u)2up 1+HPC cosd vZ—CZ-1+uuZ,

with up' =usin 0, u,' = ucos 0.

Various expressions, given above, combine together to previde the velocity of electron before the

collision in terms of the required variables. Finally, we get V' using the energy conservation law:
V=V (v?-v2) + V2

Now we can carry out the five-dimensional integral using the standard Monte Carlo technique, that

is, by generating random values of V, 0, y, ¢, and « and by calculating the corresponding
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integrand. Using this collision integral, which incorporates the effect of temperature of the
background gas, in the Boltzmann equation we can evaluate the electron velocity distribution

function. For this purpose, we investigated distribution of electrons in gaseous argon. The initial

distribution of electrons is assumed to be a Maxwellian function, f, .~ exp (- v2/vfh), where v is

related to the electron temperature T o (which is taken in this model investigation as 10° K) and the

initial gas temperature is taken to be one-half of the electron temperature. For the mass ratiop =
1073, which is of correct order of magnitude for electrons in argon, fig. 8a compares the

numerically calculated equilibrium electron velocity distribution function (solid line) with the initial

Maxwellian distribution function (dashed line) for Vo = 0 and for no external electric field.
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Fig. 8: Electron velocity distribution function for two different values of the mass ratio, L.
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Obviously, the effect of temperature of the ambient gas is hardly noticeable in this figure.
However, if the magnitude of the mass ratio p is artificially inflated to an unrealistic value of 10‘2,
the electron velocity distribution function, at equilibrium, differs perceptibly, as seen in fig. 8b,
from the initial Maxwellian function. Based on the results of fig. 8 it appears that the effect of
temperature of the background gas on the electron velocity distribution function, and consequently

on the swarm parameters, may not be important as long as there is no external electric field.

2. Comparative study of electron and positron transport in gases.

In order to compare the time-dependent behavior of a swarm of electrons in various atomic
gases with the behavior of swarms of other charged projectiles, we have investigated the transport
properties of electrons and positrons in the same ambient gas. Positrons, being antiparticles of
electrons, are quite similar to electrons in all respects except that, unlike electrons, the polarity of
their charge is positive. Investigations of the comparative behavior are accomplished by solving
the Boltzmann transport equation exactly using our novel algorithm which has been described
above. For both electrons and positrons, we have to include, in the collision term of the
Boltzmann equation, the cross sections for the elastic, excitation and ionization processes. In
addition, in the case of positrons, the effect of positronium formation and of positron annihilation
had to be included to achieve the correct equilibrium values of various swarm parameters (such as
the average energy and drift velocity of the projectiles as well as ionization and excitation rates of
the background gas, etc.). The equilibrium values of the swarm parameters depend only on the
ratio E/N, the ratio of the applied external electric field to the gas number density. In order to
assess the accuracy of the present numerical results in the comparative study, we first calculated
drift velocity of electrons in pure gaseous neon for which considerable experimental data is
available for comparison. Fig. 9 shows the drift velocity of electrons in neon for several values of
E/N and it seems to agree quite favorably with the corresponding experimental data of Pack [3],

Robertson [4] and Nielson [5]. This superb agreement provides confidence in the accuracy of our
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numerical results for various swarm parameters. Now, for the comparative study, Fig. 10
displays, as an example, the equilibrium values of the drift velocity of electrons and of positrons in
the same gas (namely, neon) for the same values of E/N. As expected, the drift velocity for both
projectiles approaches zero as E/N — 0. However, for higher values of E/N, the drift velocity
(and, therefore, mobility) of positrons is consistently larger, by almost a factor of 2.5, than the
drift velocity of electrons in neon. It is anticipated that investigations of transport properties of
several different projectiles in the same gas will assist in optimizing the choice of the projectile to
be used in the gas for the particular application at hand.
3. Dissociation of vibrationally excited H, by electron impact

As part of our investigations we have continued to calculate the cross sections for the
processes which are important for a realistic modeling of the hydrogen plasma. In a typical
hydrogen source, vibrationally excited H, molecules are depleted both by dissociative electron
attachment and by pure dissociation of the molecule. Since previous investigations have clearly
demonstrated that the cross sections for dissociative electron attachment to H, are significantly
enhanced if the molecule H, is initially vibrationally excited, it is, then, natural to ask whether the
cross sections for pure dissociation of H, are also strongly dependent upon the initial vibrational
state of H,. In the present investigations we have interpreted the process of pure dissociation of

as an extension of the process of vibrational excitation of H, by electron impact in which the
p y p

final vibrational level lies in the continuum. In such a situation the dissociation of the molecule will
occur, analogous to the vibrational excitation of molecule, predominantly via the formation of an
electron-molecule resonance. The significance of a resonance formation for the vibrational
excitation to occur can be appreciated by a simple analogy: A small bee kicking (or colliding with)
a large elephant would not cause much perturbation to the elephant unless it stays and buzzes
around the big animal for a time period much longer than the normal transit flying time of the bee.
During a collision it will be easier for an electron to change the vibrational mode of a much more

massive molecule if it can form a resonance with the molecule. At low energies electron can form
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Fig. 11: Total cross sections for the electron impact dissociation of vibrationally excited H,. v, is

the initial vibrational quantum number of the molecule H,,.
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two distinct resonances with H, molecule; these two resonant states of H2 are the X 22: and B 22;
states. The X 22: resonance decays only to the ground electronic state, X IZ;, of molecular
hydrogen while the B 22; resonance can, over a certain range of internuclear separations, decay

both to the excited b 32: state and the ground X IZ; state of H2 Thus, in our calculations, we

have included the following three channels:

e +Hy(X lz;, v) — Hy(B 222) — ¢ +Hy(b3Z)) — ¢ + H(1s) + H(ls) , (30)
¢ +HX 5, v) —~ HyB7E) — ¢ +Hy(X''E) — ¢ +H(19 +Hs) , (1)
e +H,(X 12;, v) — Hy(X %) — ¢ + Hy(X 12;) —~e +H(1s)+H(s) . (32)

Using the traditional formalism of the resonance theory, we have calculated the sum of the cross

sections for the dissociation of H, by low energy electron impact via each of these three channels
" (Egs. (30-32)). The total dissociation cross sections of H, in various initial vibrational levels v,

are shown in fig. 11. For any initial vibrational levels v, the contribution of channel (31) is

negligible at all electron energies while channel (30) contributes significantly at all energies where

this channel is energetically open. Contribution of channel (32), on the other hand, is insignificant

for low values of v, but increases dramatically as v, is increased and for large initial vibrational
excitation of the molecule (vi 2 8) the contribution of channel (32) can become comparable to the
contribution of channel (30). The details of this work have been published as a letter in a refereed
journal [6].

4. Asymptotic form of the penetration probability of the quantum harmonic

oscillator into the classically forbidden region

During the course of present investigations, we came across an interesting problem that
apparently has not been addressed in any previously published work. The problem concerns a
linear harmonic oscillator of which both the classical and the quantum versions have been studied
quite extensively. Surprisingly, however, little seems to be known about the quantum-mechanical

probability P(n) of finding the oscillator outside the classical turning points when the quantum
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number n is large, notwithstanding the obvious expectation, based on the correspondence
principle, that this probability must somehow tend to zero as the quantum number tends to infinity.
A recent article [7] presented a conjecture, supported by a purely numerical investigation, that this

probability has the asymptotic form

P(n)=A (n N %)'1/3 -B (n + %)1 ... (33)

as n — oo, with A = 0.133976 and B = 0.011907. The main purpose of our work was to derive
an asymptotic formula for this penetration probability using an analytic argument based on the
behavior of the harmonic oscillator eigenfunctions in the vicinity of the classical turning points for
large quantum numbers. We have shown that this analytical result is identical in form to Eq. (33).
We have derived closed-form expressions for the coefficients A and B, and their values are found
to be quite close to those quoted above. The derivation has also yielded the order of the first
neglected term. As a further demonstration of the usefulness of the asymptotic forms of the
harmonic oscillator eigenfunctions, a formula for the quantum probability density inside the
classical turning points in the large-n limit is briefly derived and is seen to have a simple physical
interpretation.

The energy eigenstate of the quantum harmonic oscillator corresponding to the quantum

number n has energy E_ = (n + %) #io relative to the potential minimum, and the corresponding

normalized eigenfunction is given by
v, (%) = @ al v x )2 exp (x¥2x) H,(x/x )
where the H_ are the Hermite polynomials, and x | = '\’ mim The classical turning points occur at

X = i\/2vx0

where for convenience, both here and later, we put v = n + 1/2. The probability of finding the

oscillator outside the classical turning points is therefore
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e [}

P) =2 !dx hy, (0 = 2 @"n! v x )] !dx exp (-x%/x2) [H, (x/x )]
| 2vx, 2vx
or, changing the variable of integration fromx to y =x/x ,
P = == [ayep(AHHME . (34)
2"nt Vr 5 n
v

Now, using the asymptotic properties of the Hermite polynomials we have shown that P(n) can be

expressed as
4

P(n) = 21,v'13 - (g I + glz)v'l + O3 (35)

with

—
Il

1 Oﬁix A(x) = %[r@]z ,

200 = —L
L, = dexAl x) = 6773

I = Ofdx x2 Ai'(x) Ai(x) = - G[dxx A2 = -,

where Ai(x) is the standard Airy's function which is related to the modified Bessel function as

0 = 1 i (329

The integrals I; and L, are easily evaluated using the standard integral [8],

o

2(1-3

12 o o a2
Jot i = g n)rig )
The asymptotic form of the penetration probability is thus found to be approximately
Pm) = A(m+12)R - B@+12) + 0 ((n+12)R)

with

A =32 TP < 0133975 1 0.012252 36
3 A = 0133975, B = ~ 0.01225
2n2[@] 1573 (36)
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in good agreement with the values quoted above in the introductory paragraph, which were
obtained by purely numerical methods [7].

It is of interest to examine the absolute error in the first two terms of Eq. (33). Denote this
quantity as & (n), i.e., define

§(n) = Pm)-A@+1/23 + B@a+1/2)"!

In fig. 12 the absolute error 8(n) is plotted against (n + 1/2)> forn = 50, 60, 70, ..., 350, 400,
500 using the coefficients A and B given by Eq. (36). The values of P(n) were obtained by
numerical integration of thé right-hand side of Eq. (34) with respect to y2, using Simpson's rule,
on a grid of step size 0.01, in REAL*8 precision on a SGI Iris Indigo computer. The solid line in
the figure is the best linear fit through all the points. It is noteworthy that all of the values of d(n) lie
very nearly on this line, a fact which is consistent with the O-term in Eq. (35).

It is also interesting to consider the probability density in the state W}; inside the classical
turning points. In elementary textbooks on quantum mechanics [9, 10] one often sees plots like
the one in fig. 13, showing, for some large value of n (in this case n = 50), the probability density
as calculated from quantum mechaﬁics, compared with the corresponding classical probability
density

P (x) = nt@vxl-x%)12
for a harmonic oscillator of the same energy. The classical probability density is easily derived by
considering the fraction of time the oscillator spends in the interval between x and x + dx; that
fraction is just P j(x) dx. Intuitively one sees that the "envelope" of the quantum curve follows the
classical curve more and more closely as n increases. This can be seen analytically as well; yet this
fact is not shown in any textbook or paper of which we are aware. Usin g an asymptotic series

which describes the behavior of the Hermite polynomials for large order we have shown that
. 1. T -
I\un(x)l2 = P (x) {2 sin? [v (9 -5 sin 29) + Z] + O(v 1)} R
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as n — . Thus to leading order, the quantum probability density inside the classical turning
points is indeed, for large quantum numbers, a rapidly oscillating function modulated by a more
slowly varying "envelope" consisting of its classical counterpart.

In conclusion, we have analytically derived an asymptotic formula for the penetration
probability of the quantum harmonic oscillator into the classically forbidden region for large
quantum numbers, and seen that it is in reasonably good agreement with an asymptotic formula
obtained previously [7] by numerical methods. We have also used a numerical calculation to
support the derived order of the error in the first two terms of this formula. Finally, we have
shown that the leading-order term in the asymptotic expansion, for large quantum numbers, of the
quantum probability density inside the classical turning points has a form which is readily
. understood physically in light of the correspondence principle. The details of the analytical work
are in our paper which has appeared in the American Journal of Physics [11].

5. Presentations / Publications

During the tenure of the present Grant we have made presentations of our research
investigations at various national and international scientific conferences. These are

« "Time-dependence of swarm parameters of electrons in argon", (with A. A. Sebastian);
presented at the 44th Annual Gaseous Electronics Conference, Albuquerque, New Mexico,
October 22-25, 1991.

+ "The mass dependence of cross sections for vibrational excitation of diatomic molecules by
electron impact", (with D. E. Atems); presented at the 44th Annual Gaseous Electronics
Conference, Albuquerque, New Mexico, October 22-25, 1991.

» "A new isotope scaling law for vibrational excitation of diatomic molecules by electron
impact", Bull. Am Phys. Soc. 37, 1093 (1992) (with D. E. Atems); presented at the 1992
Annual Meeting of the Division of Atomic, Molecular and Optical Physics, Chicago,
llinois, May 19-22, 1992. |
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*

"Electron transport in argon and neon under the influence of an rf electric field", Bull. Am
Phys. Soc. 37, 1114 (1992) (with A. A. Sebastian and P. J. Drallos); presented at the 1992
Annual Meeting of the Division of Atomic, Molecular and Optical Physics, Chicago,
Ilinois, May 19-22, 1992.

"Transport of electrons in hydrocarbon gases at high E/N", (with A. A. Sebastian and P. J.
Drallos); presented at the 45th Annual Gaseous Electronics Conference, Boston,
Massachusetts, October 27-30, 1992.

"Effect of an rf electric field on the charged particle transport in rare gases”, Bull. Am. Phys.
Soc. 37, 1544 (1992) (with A. A. Sebastian); presented at the Thirty-Fourth Annual
Meeting of the Division of Plasma Physics, Seattle, Washington, November 16-20, 1992.

"Transport of electrons in simple hydrocarbon gases subjected to external electric fields",
(with A. A. Sebastian); presented at the Eighteenth International Conference on the Physics
of Electronic and Atomic Collisions‘, Aarhus, Denmark, July 21-27, 1993.

"Effect of initial vibrational excitation on the dissociation of H, by low-energy electron
impact", (with D. E. Atems); presented at the Eighteenth International Conference on the
Physics of Electronic and Atomic Collisions, Aarhus, Denmark, July 21-27, 1993.

"Electron transport in hydrocarbon-rare gas mixtures”, (with A. A. Sebastian); presented at
the 46th Annual Gaseous Electronics Conference, Montreal, Quebec, October 19-22, 1993.

"Charged particle transport in mixtures of hydrocarbon and rare gases subjected to external
fields", Bull. Am. Phys. Soc. 38, 1994 (1993) (with A. A. Sebastian); presented at the
Thirty-Fifth Annual Meeting of the Division of Plasma Physics, St. Louis, Missouri,
November 1-5, 1993. "

"Electron transport in mixtures of hydrocarbon and rare gases subjected to a time-dependent
tf electric field", (with A. A. Sebastian); presented at the 1994 Annual Meeting of the
Division of Atomic, Molecular and Optical Physics, Washington, DC, April 18-21, 1994.
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During the tenure of the present Grant, our research investigations have led to the following
refereed publications:

+  "Vibrational excitation of H, and HCI by low-energy electron impact: An isotope scaling
law", D. E. Atems and J. M. Wadehra, Chem. Phys. Letts. 197, 525 (1992).

»  "A new representation of the generalized oscillator strength for bound - free transitions in
hydrogenlike systems", J. M. Wadehra and S. P. Khare, Phys. Letts. A172, 433 (1993).

«  "Resonant contributions to dissociation of Hp by low-energy electron impact”, D. E. Atems
and J. M. Wadehra, J. Phys. B Letter 26, L759 (1993).

+  "Asymptotic form of the penetration probability of the quantum harmonic oscillator into the
classically forbidden region", D. E. Atems and J. M. Wadehra, Am. J. Phys. 63, 443
(1995).

«  "Electron attachment to molecules at low electron energies", A. Chutjian, A. Garscadden
and J. M. Wadehra, Phys. Rep. (accepted, 1995).

In addition, the following papers are under preparation and will be submitted to refereed journals
for publication soon: |

+  "Exact numerical solutions of the Boltzmann equation for electrons in gases subjected to
external electric fields", A. A. Sebastian and J. M. Wadehra, (1996).

«  "Exactly solvable model for the time-dependence of charged particle swarms in gases

subjected to external fields", A. A. Sebastian and J. M. Wadehra, (1996).
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